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0.1. Eigenfunctions of the Laplacian. Let Ω ⊂ R2 be a bounded, connected,
planar domain, with piecewise smooth boundary. The Dirichlet Laplacian is (the

self-adjoint extension of) the operator∆ = ∂2

∂x2 + ∂2

∂y2 acting on functions f ∈
C∞c (Ω\∂Ω) which vanish in a neighborhood of the boundary ∂Ω. It is known that
there is an ONB of L2(Ω) consisting of eigenfunctions of ∆: −∆fn = Efn, that
the eigenvalues cluster only at infinity: En →∞.

0.2. Examples.

0.2.1. Eigenfunctions on an interval. We take B to be an interval B = [0, a] of
length a. Then the functions

fn(x) :=

√
2

a
sin

πnx

a
, n ≥ 1

vanish at the boundary points 0, a, are orthonormal on [0, a], and are eigenfunctions

of the Laplacian ∆ = ∂2

∂x2 with eigenvalue En = π2n2.

0.2.2. Eigenfunctions on the circle. Take S1 = R/Z the unit circle. Then an ONB
of eigenfunctions are the elementary exponentials en(x) = e2πinx, n ∈ Z, with
eigenvalue 4π2n2, which appears with multiplicity two (except when n = 0).
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2 ZEÉV RUDNICK

0.2.3. Eigenfunctions on the rectangle billiard. We take a rectangle R = [0, a]×[0, b]
with side-lengths a and b. The clearly the functions

fm,n(x, y) =
2√
ab

sin
πmx

a
sin

πny

b

vanish on the boundary ∂R{x = 0, a} ∪ {y = 0, b}, and are eigenfunctions of the

Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2 with eigenvalue

Em,n = π2
(

(
m

a
)2 + (

n

b
)2
)
.

They give an orthonormal basis (ONB) of all Dirichlet eigenfunctions on the rec-
tangle R.

0.2.4. Toral eigenfunctions: Any eigenfunction on the torus T2 = R2/Z2 with
eigenvalue 4π2E is of the form

f(x) =
∑
µ∈Z2

|µ|2=E

a(µ)eµ(x), eµ(x) := e2πi〈µ,x〉.

The L2 norm is

||f ||22 =

∫
T2

|f(x)|2dx =
∑
µ

|a(µ)|2

0.2.5. The disk. Take Ω = {x2 + y2 ≤ 1} the unit disk. The eigenfunctions are, in
polar coordinates (r, θ),

fn,k,±(r, θ) = Jn(jn,kr)

{
sin(nθ)

cos(nθ)

where Jn(u) is the n-the Bessel function, and jn,k is the k-th zero of Jn. These are
eigenfunctions with eigenvalue j2

n,k. The spectrum has multiplicity 2.

Recall: The Bessel function Jn(x) is a solution of the ODE (Bessel’s equation)

x2f ′′ + xf ′ + (x2 − n2)f = 0

which is finite at x = 0. It has a power series expansion

Jn(x) =

∞∑
m=0

(−1)m

m!(m+ n)!

(z
2

)2m+n

and admits an integral representation

Jn(x) =
1

π

∫ π

0

cos(nτ − x sin τ)dτ =
1

2π

∫ 2π

0

ei(nτ−x sin τ)dτ

0.3. Hearing the shape of a drum. The question “can we hear the sound of a
drum” is the question of what we can recover about the geometry of Ω from the
spectrum {En}.

Weyl’s law (1911) says that we can recover the area of the drum:

N(X) := #{n ≥ 1 : En ≤ X} ∼
area(Ω)

4π
X

More generally, for bounded domains in Ω ⊂ Rd with nice boundary, we have

N(X) = #{n ≥ 1 : En ≤ X} ∼
ωd

(2π)d
vol(Ω)X
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where ωd is the volume of the unit ball in Rd.
Example: Weyl’s law for a rectangle reduces to our asymptotics of the number

of lattice points in a quarter-ellipse:

#{Em,n ≤ X} = #{(m,n) : m,n ≥ 1, (
m

a
)2 + (

n

b
)2 ≤ X/π2}

which we know is asymptotically the area of the quarter-ellipse, namely

1

4
area{(x/a)2 + (y/b)2 ≤ 1}X

π2
=

1

4
πab

X

π2
=
ab

4π
X =

area(R)

4π
X

which is exactly the statement of Weyl’s law!

0.3.1. Using the heat kernel. For two-dimensional drums with smooth boundary
∂Ω, we can also hear the length of the boundary, and the connectivity (number of
holes) h(Ω). The device to do this is not the asymptotics of the spectral staircase
N(X), but rather the small time asymptotics of the heat kernel

∑
n≥1 e

−Ent: As
t↘ 0, ∑

n≥1

e−Ent ∼ c1
area(Ω)

t
− c2

length ∂Ω√
t

+
1− h(Ω)

6
+ o(1)

with c1 = 1/4π, c2 = 1/8
√
π.

For a closed compact smooth surface (no boundary), the small time asymptotics
of the trace of the heat kernel is given by∑

n≥0

e−tEn =
area(M)

4πt
+

1− g(M)

6
+O(t), t↘ 0,

where g(M) is the genus of M .

0.4. The heat kernel on the interval and the Riemann zeta function. We
saw that the eigenvalues of the Laplacian d2/dx2 on the interval Ω = [0, A] are
En = (πn/A)2, n = 1, 2, . . . . Let’s use this information to compute the small time
asymptotics of the trace of the heat kernel KΩ(t) in this case:

KΩ(t) :=
∑
n≥1

e−tEn

Setting

τ := tπ/A2

we have

KΩ(t) =
∑
n≥1

e−πτn
2

=
θ(τ)− 1

2

where

θ(τ) =
∑
m∈Z

e−πτm
2

.

Proposition 0.1. We have a functional equation

θ(
1

τ
) =
√
τθ(τ)
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Proof. Let g(x) = e−πx
2

, and gτ (x) := g(
√
τx) = e−πτx

2

. As we saw in the
homework exercises, g is it’s own Fourier transform:

ĝ(y) = g(y).

Hence by the properties of the Fourier transform under dilation,

ĝτ (y) =
1√
τ
ĝ(

y√
τ

) =
1√
τ
e−πy

2/τ .

Using the Poisson sumation formula we find

θ(τ) =
∑
n∈Z

gτ (n) =
∑
m∈Z

ĝτ (m) =
1√
τ

∑
m∈Z

e−πm
2/τ =

1√
τ
θ(

1

τ
).

�

Corollary 0.2.

θ(τ) ∼ 1√
τ

(
1 +O(e−π/τ )

)
, τ ↘ 0

Proof. We clearly have

θ(τ) = 1 +O(e−πτ ), τ → +∞
and hence when τ ↘ 0, so that 1/τ → +∞,

θ(τ) =
1√
τ
θ(

1

τ
) =

1√
τ

(
1 +O(e−π/τ )

)
�

Corollary 0.3. For the interval Ω = [0, A],

KΩ(t) =
length(Ω)

2
√
π

1√
t
− 1

2
+ o(1), τ → 0

Proof. We use K(t) = (θ(τ)− 1)/2, τ = tπ/A2. Then

K(t) = −1

2
+

1

2
θ(τ) = −1

2
+

1

2

( 1√
τ

+ o(1)
)

= −1

2
+

1

2

A√
πt

+ o(1).

�

We can now compute the small time asymptotics for the heat kernel of the
rectangle R of side-lengths A and B.

Exercise 1. As t↘ 0,

KR(t) =
area Ω

4πt
− length ∂Ω

8
√
πt

+
1

4
+ o(1).

0.5. Nodal lines. Nodes are locations on a plucked string which do not move. In
vibration of a surface or membrane, the nodes become nodal lines, lines on the
surface where the surface is motionless, dividing the surface into separate regions
vibrating with opposite phase. The deflection u(x, t) of the ideal string/membrane
satisfies the wave equation ∂2u/∂2t = c2∆u. Separation of variables u(x, t) =
T (t)φ(x) implies φ is an eigenfunction of the Laplacian: −∆φ = Eφ. The nodes
are just the zeros of φ.

Let Ω ⊂ R2 be a nice planar domain. For an eigenfunction fE , the nodal line
(nodal set) is Zf := {x ∈ Ω : f(x) = 0}. The nodal domains are the connected
components of the complement Ω\Zf of the nodal set.
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Theorem 0.4 (Courant’s nodal line theorem (1923)). The number νn of nodal
domains of the n-th eigenfunction is at most νn ≤ n.

This was sharpened by Pleijel (1956) to νn/n ≤ 4/j2
0,1 = 0.691 . . .

0.5.1. The length of the nodal line: We know that (when ∂Ω is real-analytic)

c
√
En ≤ length({fn = 0}) ≤ C

√
En

It is an exercise to show that this holds for the rectangle.

0.6. Persistent components of nodal lines on the torus. As an application
of our work on lattice points on circles, we can say something about nodal lines on
the torus (or the square). The statement is that they usually have to vary!.

This is not strictly true. For instance, the line y = 1/2 is part of the nodal line
for all eigenfunctions sin(πmx) sin(π2ny).

It turns out that this is the only such curve which has this property. We show
that if Σ is not part of a closed geodesic (i.e. line with rational slope), then any
eigenfunction with sufficiently large eigenvalue cannot vanish identically on it. The
main part is the case when Σ is curved:

Theorem 0.5 (Bourgain-Rudnick). Let Σ ⊂ T2 be real analytic and have nowhere
zero curvature. Then there is some E(Σ) > 0 so that the curve Σ cannot be
contained in the nodal line of any eigenfunction fE on the torus with eigenvalue
E ≥ E(Σ), that is there is some point x ∈ Σ for which fE(x) 6= 0.

Proof. Let µ0 be such that the Fourier coefficient a(µ0) is maximal:

|a(µ0)| ≥ |a(µ)|, ∀µ.
We may replace f by f/a(µ0) so as to obtain

a(µ0) = 1 ≥ |a(µ)|, ∀µ.
Consider the integral (“period”) of fE along the curve

J :=
1

L

∫
Σ

e−µ0
fE =

1

L

∫ L

0

f(γ(t))e−2πi〈µ,γ(t)dt

If the curve Σ lies in the nodal line of fE , then J = 0. On the other hand, using
the Fourier expansion we get

J =
∑
µ

a(µ)
1

L

∫
Σ

eµ−µ0
=:
∑
µ

a(µ)I(µ− µ0).

where for ξ ∈ R2,

I(ξ) :=
1

L

∫ L

0

ei〈ξ,γ(t)〉dt

is an oscillatory integral.
The term µ = µ0 gives a contribution of a(µ0) 1

L

∫
Σ

1 = 1. Therefore since J = 0
we obtain

−1 =
∑
µ 6=µ0

a(µ)I(µ− µ0)

Hence we obtain

1 ≤
∑
µ 6=µ0

|a(µ)||I(µ− µ0)|
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We will use van der Corput’s Lemmas to bound, using the nowhere vanishing
curvature condition (and real analyticity to ensure at most finitely many critical
points), see Lemma 0.6 below,

|I(ξ)| � |ξ|−1/2.

By Jarnik’s theorem, for all except perhaps one other frequency µ1 6= µ0, we
must have

|µ− µ0| � E1/6, µ 6= µ0, µ1.

Since |a(µ)| ≤ 1, we obtain that∣∣∣ ∑
µ6=µ0,µ1

a(µ)I(µ− µ0)
∣∣∣ ≤ ∑

µ6=µ0,µ1

|I(µ− µ0)| �
∑

µ6=µ0,µ1

1

|µ− µ0|1/2

� #{µ ∈ Z2 : |µ|2 = E/4π2}E−1/12 = o(1)

because we saw that #{µ ∈ Z2 : |µ|2 = E/4π2} = O(Eε), for all ε > 0. So if there
is no µ1 6= µ0 which is close to µ0 then we have a contradiction: 1 = o(1).

If such µ1 exists, then note that I(0) = 1, and that |I(ξ)| ≤ 1 for all ξ ∈ R2, and
in fact

|I(ξ)| = 1←→ ∃c s.t. ei〈ξ,γ(t)〉 = c, ∀t ∈ [0, L]

is constant. Indeed, this follows from the case of equality in the triangle inequality,
namely

|
∫ L

0

eig(t)dt| =
∫ L

0

|eig(t)|dt

if and only if there is some constant c of absolute value 1 so that eig(t) = c for all
t ∈ [0, L].

Now the condition

ei〈ξ,γ(t)〉 = c, ∀t ∈ [0, L]

is equivalent to

〈ξ, γ(t)〉 = C

which means that γ(t) = at+b is a line (the constant speed condition |γ̇| ≡ 1 forces
a = ±1). But then the curvature is identically zero, unlike our assumption that the
curvature is never zero. So we obtain that

|I(ξ)| < 1, ∀ξ 6= 0.

Since I(ξ) → 0 as |ξ| → ∞, we infer that there is some constant c < 1 strictly
smaller than 1 so that

|I(ξ)| ≤ c < 1, ∀|ξ| ≥ 1.

Thus in particular |I(µ1 − µ0)| ≤ c < 1 and so we obtain

1 ≤ |a(µ1)|I(µ1 − µ0)|+ o(1) ≤ 1 · c+ o(1) < 1

for E � 1. This gives the required contradiction. �

0.7. Bounding the oscillatory integral.



TORAL EIGENFUNCTIONS 7

0.7.1. Background on curvature: Suppose γ : [0, L] → Σ ⊂ R2 is an arc-length
parameterization of a plane curve Σ. The unit tangent to the curve at the points
γ(s) is T (s) = γ̇(s). Let N(s) be the unit normal (a choice of sign needs to be made
here) to the curve at the points γ(s). The pair (T (s), N(s)) is the moving frame,
giving an orthonormal pair of vectors at each point on the curve.

The curvature of the curve at the points γ(s) is the instantaneous rate of change
of the angle α(s) between the tangent to the curve and a fixed direction e, say the
x-axis:

κ(s) = |dα
ds
|

An alternative description is

κ(s) = ||Ṫ (s)|| = ||γ̈(s)||.

To see this, note that because the curvature is by arc-length means that |γ̇(s)| ≡ 1.
This condition forces γ̈(s) to be orthogonal to γ̇(s) = T (s), and hence is a multiple
of the unit normal N(s). Indeed

0 =
d

ds
(||γ̇(s)||2) = 2γ̈(s) · γ̇(s)

so that γ̇(s) · γ̈(s) = 0. Hence

γ̈(s) = ±κ(s)N(s)

for some κ ≥ 0. Then κ is exactly the curvature (these are the Frenet-Serret
equations for the plane). Indeed, expand the fixed direction vector e in terms of
the moving frame:

e = cosαT + sinαN

so that cosα = e · T (s). Then

− sinα
dα

ds
=

d

ds

(
e · T (s)

)
= e · dT

ds
= e · κN = κ sinα

and taking absolute values gives κ = |dαds |.

0.7.2. Bounding the oscillatory integral. We defined for 0 6= ξ ∈ R2

I(ξ) =
1

L

∫ L

0

ei〈ξ,γ(t)〉dt

Write ξ = |ξ|u, where u = ξ/|ξ| is a unit vector, and set

φu(t) = 〈u, γ(t)〉

so that we are dealing with (ignoring the factor of 1/L) an oscillatory integral

I(λ, φu) =

∫ L

0

eiλφu(t)dt

Lemma 0.6. Under the assumption that Σ is real analytic with nowhere zero cur-
vature, we have

I(λ, φu)�Σ
1

|λ|1/2



8 ZEÉV RUDNICK

Proof. We want to use van der Corput’s lemmas to bound the integral, and it is
important that the estimates be uniform in u ∈ S1. To do so, we have to investigate
the critical points if the phase function πu(t).

We note that

φ′(t) = 〈γ̇(t), u〉 = 〈T (t), u〉, φ′′(t) = 〈γ̈(t), u〉 = κ(t)〈N(t), u〉
on using the Frenet Serret equation ·T = κN , where T = γ̇ is the unit tangent to
the curve, and N is the unit normal. Hence we have

(φ′)2 +
1

κ2
(φ′′)2 = 1

In particular, at a critical point φ′(t0) = 0, we must have |φ′′(t0)| = 1. Note that
the critical points are precisely where u is orthogonal to the unit tangent T , that
is points where the unit normal points in the direction ±u. Since we assume that
γ is real analytic, there are only finitely many such points.

Let J1, . . . , JN be the union of intervals on which |φ′′(t)| ≥ κ(t)/2 ≥ κmin/2,
where

κmin = min
[0,L]

κ(t).

These contain all critical points. By the second van der Corput Lemma, on each
such interval we have a bound (independent of u!)

I(λ, φu) ≤ 8√
min(|φ′′|; t ∈ Jj)

1

|λ|1/2
≤ 8

√
2

√
κmin

1

|λ|1/2

On the complement of these N intervals, which is a union of at most N + 1
intervals J ′1, . . . , J

′
N+1, we must have

(φ′)2 = 1− 1

κ2
(φ′′)2 ≥ 1− (

1

2
)2 =

3

4

Hence we can use the first van der Corput lemma (we can guarantee monotonicity of
φ′ after a further subdivision into finitely many subintervals; again real analyticity
is used here) to obtain that on each such subinterval J ′,

I(φu, J
′;λ) ≤ 4

min(|φ′(t)| : t ∈ J ′)
1

λ
≤ 8√

3

1

λ

�


